Exercise 5

A cylindrical tank with radius 5 m is being filled with water at a rate of $3 \mathrm{~m}^{3} / \mathrm{min}$. How fast is the height of the water increasing?

Solution

The volume of a cylinder with radius $r=5 \mathrm{~m}$ and height h is

$$
V=\pi r^{2} h=\pi(5)^{2} h=25 \pi h .
$$

Differentiate both sides with respect to t.

$$
\begin{aligned}
\frac{d}{d t}(V) & =\frac{d}{d t}(25 \pi h) \\
\frac{d V}{d t} & =25 \pi \frac{d h}{d t}
\end{aligned}
$$

Solve for $d h / d t$, the rate that the height of the water is increasing.

$$
\frac{d h}{d t}=\frac{1}{25 \pi} \frac{d V}{d t}
$$

The tank is being filled at a rate of 3 cubic meters per minute, so $d V / d t=3 \mathrm{~m}^{3} / \mathrm{min}$. Therefore, the rate that the height is increasing is

$$
\frac{d h}{d t}=\frac{1}{25 \pi}(3)=\frac{3}{25 \pi} \frac{\mathrm{~m}}{\min } .
$$

